白癜风假期不白过 https://m-mip.39.net/czk/mipso_5863565.html
年,在马云提出“人类正从IT时代走向DT时代”的9年之后,以ChatGPT为代表的人工智能应用涌现,让数据这个没有新鲜事的低调赛道再度卷起浪花。
业内公认,数据是AI大模型的基础。与之相呼应的,为杜绝“垃圾进、垃圾出”,承担数据存储、处理、服务、安全等重要职责的数据基础设施正式走到台前——融合数据资产与AI模型的差异化竞争尚未开战,谁都不想在数据基建环节就败下阵来。
然而,数据基础设施究竟怎么建,谁又能提供更适合“中国企业体质”的数据基建?这是诸多企业数字化转型多年,依旧在探索而难解的问题。
观望与探索,在“小马过河”之前回到,在定调“DT时代”的同一场活动上,马云直言“阿里巴巴是大数据的红利获利者”。
所谓大数据的“红利”,本质是通过数据看清无数事务与复杂关联背后的“真相”,依托数据支持科学的管理决策,引领高质量发展。进一步,转化为智能算法,指导机器自动做出千万种精细化的行动,例如,提供千人千面的个性体验。
几乎同期,推荐算法一跃成为阿里存算资源的头号消耗大户;阿里有50%的服务器不再处理任何事务,而仅仅用于处理数据,也恰恰从系统层面印证了这一点。
从“看数据”、“用数据”到“数据智能”,哪怕放眼全球,阿里都做出了绝佳表率,生动诠释着数据给互联网商业带来的飞跃和无限可能性。
然而,面对大厂们美好的标杆实践,更多非“数据原生”的企业依旧选择冷静观望。
“我们小小的港湾,停不下那样庞大的航空母舰。”业内几起数据底层建设“翻车”案例发生后,一家快消品牌商的CIO在接受媒体采访时表示,照搬大厂做法容易“水土不服”,其根本原因或出在数据基础设施建设成本高,而未能想清究竟要拿数据做什么,经不起无限试错,也等不起“十月怀胎、一朝分娩”。
盘点从数据生产到消费的全链路,可以简单粗暴地切分为两个部分:
上层,即数据应用,包括BI、数据可视化以及数据挖掘等等,能面向数据分析师甚至毫无技术储备的业务人员和经营管理者,让他们高效地调取和使用所需数据。
在各显神通的数据应用之下,是数据基础设施,通常由存储层(涉及云存储、分布式文件系统等)、数据处理层(包括流批图计算引擎等)、数据查询与分析层、人工智能层(提供算法训练、机器学习的技术基础)构成。上述架构无法孤立存在,而由一套数据云平台进行统一调度管理,确保数据从生产到消费全流程可用、可控、安全。
理想状态下,一套完善的数据基础设施中,应由数据云平台承担起“数据的操作系统”的重任——向下封装底层多技术、多依赖的复杂性,向上以API的方式供给数据能力,帮助业务快速搭建所需的数据应用,类似于基于iOS开发APP。
“现实根本没有像Windows、MacOS那样好用的‘数据的操作系统’,企业必须直面混乱、复杂、深奥的底层。”一位信息化咨询出身、有十余年IT经验的资深从业者表示,这往往也是企业从IT走向DT、进行数据基础设施建设的难度所在。
在-年左右的探索期,相较于投入基础建设、苦苦摸索艰深的底层数据技术,模仿互联网大厂在消费者域的做法显然更聪明:依托APP、小程序、