白癜风治疗费用高吗 https://m-mip.39.net/baidianfeng/mipso_4689217.html各位朋友,大家好!今天,数学世界将为大家分享一道初中数学中比较烧脑的竞赛题。先请朋友们尝试做一做,然后看下面的分析和解答过程,相信大家一定会有收获!例题:(初中数学竞赛题)如图所示,已知在△ABC中,∠A:∠B:∠C=1:2:4.求证:1/AB+1/AC=1/BC.这是一道求证线段比例式的几何题,给出的条件很少,图形也非常简单,绝大多数学生一看到这道几何证明题就彻底懵了,即使是学霸也被悉数难倒,其实也不怪他们,因为这是一道数学竞赛题,难度比较大。此题的考查知识点有相似三角形的判定及性质问题等。在做题时,必须将求证的结论进行变形,得出我们熟悉的线段比例式。解决此题的关键是以原三角形ABC为基础添加辅助线,构造一个三角形,使它与△ABC相似。下面,猫哥就与大家一起来解决这道例题吧!分析:若要证1/AB+1/AC=1/BC,只需证明(AB+AC)/(AB·AC)=1/BC,进一步变形可以得到(AB+AC)/AC=AB/BC,为此若能设法利用长度分别为AB,BC,CA及(AB+AC)这4条线段,构造一对相似三角形,问题可能解决.由于△ABC中已含其中的三条线段,因此,不妨以原三角形ABC为基础,结合角的关系添加辅助线,构造一个与△ABC相似的三角形即可。证明:延长AB至D,使BD=AC(此时AD=AB+AC),延长BC至E,使AE=AC,连接ED.设∠A=α,∵∠A:∠B:∠C=1:2:4,∴∠B=2α,∠C=4α,由三角形内角和得∠A+∠B+∠C=7α=°.由作图知∠ACB是等腰三角形ACE的外角,∴∠ACE=°-4α=3α,∴∠CAE=°-3α-3α=7α-6α=α.∴∠EAB=2α=∠EBA,∴AE=BE.∵由作图知道AE=AC,BD=AC,∴BE=AE=BD,∴△BDE是等腰三角形,∴∠D=∠BED=α=∠CAB,又∵∠EAD=2α=∠CBA,∴△ABC∽△DAE,∴AD/AE=AB/BC,即(AB+AC)/AE=AB/BC,等量代换得(AB+AC)/AC=AB/BC,两边都除以AB,得1/AB+1/AC=1/BC.(完毕)温馨提示:此文是原创作者猫哥一字一句打出来的,文中难免会出现一些小错误,还请大家谅解!数学世界不追求高难度题目,但一定是经典题型,希望大家喜欢。另外,若朋友们还有不明白的地方或者有更好的解题方法,欢迎留言参与讨论。谢谢!